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Optical Ranging: Synchronous-Mode Concept,
Prototype, and Validation

Marc Sanchez Net∗

ABSTRACT. — This article describes a synchronous ranging system to estimate the

range between a spacecraft and a ground station from an optical uplink and downlink.

Time transfer between the uplink and downlink is achieved by (1) synchronizing the

uplink and downlink symbol clocks at the spacecraft, and (2) defining a new protocol

data unit, termed ranging codeword, to provide sufficient range ambiguity resolution.

The article is divided into three parts. First, it explains the general concept of a

synchronous ranging system, including how range estimates can be recovered from

phase measurements and how the system operates when used in conjunction with the

protocol stack defined by the Consultative Committee for Space Data Systems for

high photon efficiency optical links. Secondly, this article derives the necessary

equations to estimate the system performance assuming that both the spacecraft and

ground station use a photon-counting device to receive the optical system.

Finally, the third part of this article describes a software prototype developed at the

Jet Propulsion Laboratory to validate the operation of a synchronous ranging system.

To do so, I utilize channel conditions representative of the Deep Space Optical

Communications experiment on board the Psyche spacecraft and showcase the

achievable ranging performance in two scenarios, one with benign channel conditions

and one with expected channel conditions at 1 AU.

I. Introduction

Optical ranging is a generic term used to denote the set of technologies required to

estimate the distance between a spacecraft and a reference point, nominally a ground
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station on Earth.1 Currently, the Consultative Committee for Space Data Systems

(CCSDS) is considering standardizing two alternative methods to achieve optical

ranging, henceforth termed synchronous and asynchronous modes.

A previous article described the principle of operation of the asynchronous mode [1],

which is based on the already standardized Radio Frequency (RF) Telemetry Ranging

[2]. Here, we instead focus our attention on the synchronous mode and describe (1) its

principle of operation and (2) the prototyping effort undertaken at the Jet Propulsion

Laboratory (JPL) to validate its operation and demonstrate its capabilities. Note that

this prototyping effort also serves as one of the (at least) two implementations

required by CCSDS prior to issuing a new standard.

The synchronous mode of operation is based on the Time-of-Flight experiment

performed by the Lunar Laser Communication Demonstration (LLCD) on board the

Lunar Atmosphere and Dust Environment Explorer (LADEE) [3]. In particular, this

experiment demonstrated centimeter-level ranging capability using an optical uplink

and downlink from the Moon, albeit after several post-processing steps to eliminate

several artifacts induced by technical limitations of the flight and ground terminals,

which were not specifically designed for ranging purposes.

A. The CCSDS Protocol Stack

To understand the principle of operation of the synchronous mode, a basic

understanding of the protocol stack as defined by the CCSDS is necessary, particularly

the optical communications standards currently available for High Photon Efficiency

(HPE) systems [4, 5].

The primary concern of HPE systems is power efficiency. Consequently, information is

modulated onto the optical channel using Pulse-Position Modulation (PPM). In PPM,

each channel symbol comprises M time slots, followed by P guard slots (see Figure 1).

One of the M time slots contains signal photons, depending on the symbol being

transmitted (e.g., see blue slot in Figure 1), while all other M − 1 slots only contain

background noise photons. Similarly, the P guard slots never contain signal photons

and are used at the transmitter to accommodate physical laser requirements and at

the receiver to aid in slot synchronization.

CCSDS has standardized two HPE signaling schemes, known as HPE telemetry and

HPE beacon, and optional accompanying data signaling [5]. In HPE telemetry, a PPM

symbol can have order M equal to {4, 8, 16, 32, 64, 128, 256}, the number of guard slots

is equal to P = M/4, and the slot duration Ts = {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32,

64, 128, 256, 512} ns. This, together with the other parameters of the standard, allow

the link to operate at information rates as high as 2.1 Gbps and as low as 485 bps,

approximately. On the other hand, the HPE beacon-plus-accompanying-data format is

1Optical ranging via a relay is beyond the scope of this article.
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Figure 1. Symbol Structure for an M-PPM Modulation with M/4 Guard Slots with M = 8.

more constrained and only admits M = 2, P = 2, and a slot width of Ts = 65536 ns,

resulting in information rates ranging from 2 kbps to 18 bps, approximately.

To generate the stream of PPM symbols to be transmitted over the optical channel,

the CCSDS optical standard defines several protocol data units (PDUs) and

processing steps to transform a set of logical binary information bits into a collection

of PPM symbols and guard slots. These steps include, among others, randomization,

encoding, interleaving, and addition of synchronization markers [5]. A detailed

description of these steps is not necessary for this article. However, because the

synchronous mode of operations relies on synchronization markers to generate the

necessary ranging observables, a basic understanding of the PDUs transmitted over

the channel is now provided. In particular, several PDUs are defined as follows:

� A codeword is a set of PPM symbols available at the output of the encoder.

Each codeword is generated by taking as input k information bits; adding n− k
redundancy bits, possibly interleaving them; and outputting n/ log2M M -ary

symbols, where k/n is known as the code rate.2

� An interleaved codeword (ICW) is generated by taking as input one or multiple

codewords, processing their PPM symbols via an interleaver, and grouping the

resulting symbols in chunks of length n/ log2M .

� A synchronization-marked codeword3 (SMCW) is obtained by concatenating a

codeword synchronization marker4 (CSM) and an ICW. The sequence of PPM

2Note that this description implicitly assumes the use of a block code of rate k/n.

3Different CCSDS standards have different names for an SMCW. For example, the CCSDS

Telecommand standard calls it a Communications Links Transmission Unit (CLTU), while the

Telemetry standard calls it a Channel Access Data Unit (CADU). Currently, the CCSDS HPE optical

standards do not have a specific name for it.

4Different CCSDS standards have different names from the synchronization marker. Furthermore,

markers might be placed between multiple codewords, rather than once per codeword.
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symbols that define a CSM is provided in [5] and depends on the signaling

format.

� A repeated SMCW is generated by taking an ICW and repeating each M -ary

PPM symbol Q times to form a super-symbol. This increases the available signal

power at the receiver at the expense of information rate.

This protocol structure is depicted in Figure 2. Note that each PPM symbol is

represented here by a number ranging from 0 to M − 1, which indicates the time slot

in the symbol that is activated.

ICW0

CSM ICW0

SMCW0

ICW1

CSM ICW1

SMCW1

ICW2

CSM ICW2

SMCW2

ICW3

CSM ICW3

SMCW3
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Figure 2. SMCW Structure Assuming 8-PPM Symbols and No Repetition.

For the proposed synchronous ranging, an additional protocol data unit must be

defined, which is termed a ranging codeword here (RCW). An RCW contains N ≥ 1

contiguous SMCWs and is delimited by a special synchronization marker called a range

synchronization marker (RSM), a structure shown in Figure 3. Note, however, that in

the special case where N = 1, an RCW is equivalent to an SMCW and, consequently,

the RCW is delimited by the CSM instead of being replaced by the RSM.

RSM ICW0
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RSM ICW3
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CSM ICW4

SMCW4

CSM ICW5
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Figure 3. RSM Structure with N = 3 SMCW per RCW.

B. PPM Signal Model and Phase Definition

Consider an optical PPM signal being sent by a transmitter. It can be expressed

mathematically as

x(t) =

∞∑
m=−∞

Q−1∑
q=0

p(t− imTs + (q +mQ)T ), (1)
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where T = (M + P )Ts denotes the duration of a PPM symbol, plus its guard slots;

p(t) is a rectangular pulse of duration Ts; M and P denote the number of signal slots

and guard slots per PPM symbol; Q is the repeat factor; and {im} is a sequence of

independent and identically distributed uniform random numbers taking values

{0, 1, ...,M − 1}.

Define the phase of the transmitted signal as a real number that indicates the possibly

partial number of PPM symbols that have elapsed since the start of transmission. In

other words,

ψT (t) = Qm(t) + q(t) + i(t), (2)

where m(t) and q(t) are integers such that

m(t) =

⌊
t

QT

⌋
(3)

q(t) =

⌊
t

T
−m(t)Q

⌋
, (4)

and i is a fractional number between zero and one:

i(t) =t− (m(t)Q+ q(t))T. (5)

Here, m(t) counts the integer number of Q-repeated PPM symbols plus guard time

completely transmitted by time t; q(t) denotes the integer number of PPM symbols

plus guard time completely sent in the current Q-repeated symbol; and i(t) is a real

number between 0 and 1 that indicates the part of the current PPM symbol that has

been transmitted. Note that, as defined, ψT (t) is an unwrapped phase. In other

words, it grows from zero to infinity.

The signal arrives at the receiver after a certain propagation delay, which is in general

time varying and denoted by τ(t). Therefore, it can be expressed mathematically as

r(t) =

∞∑
m=−∞

Q−1∑
q=0

p(t− τ(t)− imTs + (q +mQ)T ). (6)

The phase of the received signal, denoted by ψR(t), is again a fractional number that

counts, at a given time t, the number of PPM symbols that have elapsed since the

start of transmission. It is constructed in a similar manner as ψT (t), albeit in this case

the explicit expressions have to account for the fact that, at reception, the duration of

a PPM symbol plus guard time may no longer equal to T .

Additionally, it is also convenient to define the relative phase of the received signal

with respect to the transmitted signal as

ϕ(t) =
τ(t)

T
. (7)
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This phase can be decomposed in two parts, an integral and a fractional part:

ϕs(t) =

⌊
τ(t)

T

⌋
(8)

ϕf (t) =
τ(t)

T
− ϕs(t). (9)

The phase estimator at the receiver tracks a wrapped version of ϕf (t) and provides the

generated estimates to a Phase-Locked Loop (PLL) that filters out part of the noise

and recovers an unwrapped version of ϕf (t). Therefore, in this article we will assume

that the relative phase measured at the receiver is directly equal to the unwrapped

version of ϕf (t). Furthermore, we will denote it by ϕ(t) to simplify the notation.

C. One-Way and Two-Way Propagation Delay

This section introduces several concepts and notations that are useful when studying a

two-way synchronous ranging. In particular, let d(t) be a time-varying function that

specifies the relative distance between a ground station and a spacecraft, and assume

that the optical signal propagates at the speed of light c so that the propagation delay

is simply

τ(t) =
d(t)

c
. (10)

Then this article defines the following quantities:

� τu(t) denotes the uplink one-way propagation delay experienced by a signal

departing at time t from a known reference point in the ground station.

� τd(t) denotes the downlink one-way propagation delay experienced by a signal

departing at time t from a known reference point in the spacecraft.

� τud(t) denotes the uplink-plus-downlink propagation delay, also known as

round-trip light-time (RTLT) delay, experienced by a signal departing at time t

from a known reference point in the ground station.

� τ̃u(t) denotes the uplink one-way propagation delay experienced by a signal

arriving at time t to a known reference point in the spacecraft.

� τ̃d(t) denotes the downlink one-way propagation delay experienced by a signal

arriving at time t to a known reference in the ground station.

� τ̃ud(t) denotes the uplink-plus-downlink propagation delay experienced by a

signal arriving at time t from a known reference point in the ground station.

Figure 4 shows the difference between τ(t) and τ̃(t) assuming that d(t) is a linear

function. Observe that with the exception of the trivial and unrealistic case where d(t)

6
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Figure 4. Forward and Backward Round-trip Light-Time Delays. In the figure, tA = t0 + τu(t0) and

tB = t0 − τ̃d(t0). “SC” denotes spacecraft.

is constant, we have that τu(t) 6= τ̃u(t), τd(t) 6= τ̃d(t), and τud(t) 6= τ̃ud(t). However,

the following relationships do hold:

τud(t) = τu(t) + τd(t+ τu(t)) + τsc (11)

τ̃ud(t) = τ̃u(t− τ̃d(t)) + τ̃d(t) + τsc, (12)

where τsc denotes the delay experienced onboard the spacecraft as the signal travels

from a known reference point on the receiver to a known reference point on the

transmitter (Figure 4 assumes τsc = 0 for simplicity’s sake).

Furthermore, it is sometimes advantageous to explicitly differentiate between the

times of departure and arrival of the signal. Therefore, this article defines the

following notation:

� tT denotes the time of departure from the ground station.

� tS denotes the time of arrival to the spacecraft. Unless stated otherwise, assume

τsc = 0 so that tS is also equal to the time of departure from the spacecraft.

� tR denotes the time of arrival to the ground station.

Note the following relationships in the “forward” time direction:

tS =tT + τu(tT ) (13)

tR =tS + τd(tS) = tT + τud(tT ), (14)
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and the following relationships in the “backward” time direction:

tS =tR − τ̃d(tR) (15)

tT =tS − τ̃u(tS) = tR − τ̃ud(tR), (16)

which result in

τud(tT ) = τ̃ud(tR). (17)

II. Principle of Operation

A synchronous ranging system measures the range between a spacecraft and a ground

station by synchronizing the phase of the received uplink and transmitted downlink

RCWs (hence the name “synchronous mode”). Once clock synchronization is

achieved, the spacecraft transponder acts as a time transfer mechanism in which the

start of transmission of a downlink RCW occurs a fixed duration after the arrival of an

RCW on the uplink.

To illustrate the principle of operation of the synchronous ranging mode, this section

is divided into three parts. First, it describes a synchronous ranging system under

idealized conditions, which helps clarify the key conditions that must be met for

successful operation of the system. Next, this section discusses the effect of several

nonideal factors that must be taken into account in a technically implementable

synchronous ranging system. This includes, for example, the need to calibrate delays

between electronic subsystems at the ground station and onboard the spacecraft, as

well as the effect of spacecraft dynamics on the ranging system. Finally, this section

concludes by describing how the synchronous ranging system operates when the

spacecraft moves with respect to the tracking ground station.

A. Idealized Ranging System

Consider an idealized synchronous ranging system that operates in an environment

such that the relative distance between the spacecraft and ground station is constant.

The structure of the system is shown in Figure 5, assuming that

� one uplink RCW is equal to Nu = 1 SMCW;

� one downlink RCW is equal to Nd = 5 SMCWs5;

� the departure of downlink RCW (denoted by RCWd) starts exactly when an

uplink RCW arrives (denoted by RCWu), as highlighted by the blue dotted lines;

� the range rate between the spacecraft and the ground station is zero;

� there are no signal delays at the ground station or the spacecraft;

5Nd = 5 is chosen here arbitrarily for the sake of clarity.
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� and all electromagnetic signals travel at the speed of light c.

RCWu=SMCWu

CSM CSM

GS

Uplink

RCWu=SMCWu

CSM CSM

SC

Uplink

SMCWd

RSM

SMCWd

CSM

SMCWd

CSM

SMCWd

CSM

SMCWd

CSM

SMCWd

RSM

RCWd

CSM

SC

Downlink

SMCWd

RSM

SMCWd

CSM

SMCWd

CSM

SMCWd

CSM

SMCWd

CSM

SMCWd

RSM

RCWd

CSM

GS

Downlink
τud = τu + τd

Figure 5. Idealized Synchronous Ranging System. “GS” denotes a ground station.

The phase measured by this ranging system is relative to the start of an RCW.

Furthermore, the system is constructed so that the duration of a downlink RCW

equals the duration of an uplink RCW, measured at the spacecraft.6 This ensures that

the arrival of an RCW on the uplink is time-aligned with the departure of an RCW on

the downlink.

To guarantee that the system achieves synchronicity and maintains it over time, two

conditions must be met: First, the spacecraft radio must synchronize the uplink and

downlink slot and symbol clocks. Second, the number of SMCWs per uplink RCW

must be integrally related to the number of SMCWs per downlink RCW. This can be

observed in Figure 5, which arbitrarily uses an integral relationship of 1:5 for

demonstration purposes.

To illustrate how a range measurement is recovered in this idealized ranging system,

consider the system in Figure 6 and assume that a range measurement for the

spacecraft is to be obtained at time tR. At that time, the ground station measures two

quantities, the phase of the transmitted signal ψT (tR) and the phase of the received

signal ψR(tR), which are both measured from the leading edge of an RSM (or the

leading edge of a CSM if N = 1). Furthermore, if ψT (tT ) was known, then

ψT (tR) =
tR
Tu

=
tT + τud(tT )

Tu
(18)

ψT (tT ) =
tT
Tu
, (19)

where Tu denotes the duration of an uplink PPM symbol (and we have implicitly

6This distinction is important because in a system with range dynamics (i.e., the distance between the

spacecraft and the ground station varies over time), the duration of SMCWu when it departs the

ground station is different than when it arrives at the spacecraft.
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Figure 6. Idealized Range Measurement.

assumed that transmission started at t = 0). Consequently,

ψT (tR)− ψT (tT ) =
τud(tT )

Tu
(20)

from which the RTLT and distance could be directly inferred. Note that, using this

procedure, the system would either estimate τud(tT ) or τ̃ud(tR), and thus care must be

exercised to associate the measurement with the appropriate instant of time.

At the ground station, ψT can be recorded over time and stored for post-processing.

However, ψT (tT ) is not directly known because tT is unknown. But thanks to the

restrictions imposed in the synchronous ranging system, the phase measured on the

downlink ψR(tR) is equal to a scaled version of the phase transmitted one RTLT ago.

Namely,

ψR(tR)β = ψT (tR − τ̃ud(tR)) = ψT (tT ), (21)

where β = Td

Tu
is a conversion factor that relates the duration of a downlink and uplink

PPM symbol, plus their guard times. Therefore, after substituting Equation (21) into

Equation (20) and solving for the RTLT, we get

τud(tT ) = TuψT (tR)− TdψR(tR). (22)

Furthermore, because we have assumed that (1) the spacecraft and ground station are

stationary with respect to each other and (2) all electromagnetic signals travel at the

speed of light, we know that

τud(t) =
2d(t)

c
. (23)

Therefore, combining Equations (22) and (23) results in

d(tT ) =
c

2

[
TuψT (tR)− TdψR(tR)

]
. (24)
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Finally, note that in a practical system, ψT (tR) might not be available if the RTLT

delay is very long (e.g., it takes several hours for a signal sent from Earth to reach the

Voyager spacecraft). In that case, τud(t) can still be measured as long as the departure

time tT can be recovered from βψR(tR).

B. Calibration Delays

The analysis developed in Section II.A assumes several idealized conditions not

realizable in real life. This section succinctly addresses one of them, namely the

calibration delays that need to be measured and subtracted prior to range

measurement estimate. Note that this is not the main purpose of this article, so the

treatment offered here is rather superficial. Instead, see [2] and [6] for a more in-depth

treatment of the different delays that must be calibrated.

First, consider the problem of delays introduced by the ground station measurement

system. Traditionally, ranging measurements at the Deep Space Network (DSN) have

been obtained with respect to the antenna used for ranging purposes, more specifically

the intersection of the azimuth and elevation axes of the parabolic reflector. This

point of reference is chosen because its position on Earth is known (and can be

propagated) with a high degree of precision, thus providing an accurately known point

of reference for navigation purposes.

However, the electronic equipment in charge of recording the uplink and downlink

phases is not located at the antenna but rather at the signal-processing center (SPC),

possibly a few kilometers away from the parabolic reflector. Therefore, when

estimating τud, it is necessary to subtract the delay introduced by the ground lines

connecting the SPC and the antenna. In other words, under the assumption of an

ideal spacecraft transponder, the distance estimate between the ground antenna and

the spacecraft is computed as

d(tR) =
c

2

[
τud − τgsup − τ

gs
dn

]
, (25)

where τgsup is the propagation delay between the SPC’s uplink electronics and the DSN

antenna, and τgsdn is the same quantity measured between the antenna and the SPC’s

downlink electronics. Note that τgsup and τgsdn are not necessarily constant over long

timescales, so the DSN performs periodic calibration exercises to ensure that their

magnitudes are well characterized.

Next, consider the ability of the spacecraft to perfectly synchronize the uplink and

downlink RCWs. Two effects must be considered: synchronization errors induced by

noise and residual delays introduced by the spacecraft electronics. The former cannot

be calibrated away due to their stochastic nature but rather impose a lower limit on

the system’s range resolution. Estimating the range error induced by noise is typically

performed during mission planning using a ranging link budget and ensures that the

available ranging techniques are sufficient to meet the mission ranging requirements.

11



Alternatively, residual delays introduced by the spacecraft electronics are typically

calibrated while testing the spacecraft’s transponder prior to launch and then

subtracted from the range estimate.7 In other words, the range estimate will now be

obtained as

d(tR) =
c

2

[
τud − τgsup − τ

gs
dn − τsc

]
, (26)

where τsc is the propagation delay between the two spacecraft reference points, one on

the uplink and one on the downlink (for spacecraft with a single antenna used in full

duplex mode, a single reference point may be used). Note that, from a practical

standpoint, this effect prevents the spacecraft radio from transmitting a downlink

RCW exactly at the same time that an uplink RCW starts arriving (as shown in

Figures 5 and 6). Instead, the downlink RCW will depart a certain delay after the

arrival of each uplink RCW, but what really matters is for this delay to remain

constant.

C. Spacecraft Dynamics

This section considers how spacecraft dynamics affect the synchronous ranging system

presented in this section. In general, these spacecraft dynamics are caused by the

relative motion between the spacecraft and the ground telescope making the ranging

measurement—more precisely, the radial component of the spacecraft’s velocity.

To model this effect, let us assume that the distance between the spacecraft and the

ground station is variable over time and denote it by d(t). Furthermore, for a

reasonably short period of time (e.g., a few hours), and assuming no impulsive

maneuvers or planetary entries are performed during the ranging period, this function

can be approximated as linear:

d(t) = d0 + r · t, (27)

where d0 denotes the distance at the beginning of the ranging track, and r denotes the

range rate, in units of distance per second. Note that under certain circumstances

(e.g., propulsive maneuver, orbital insertion) higher-order terms should also be

included (e.g., range acceleration), but they are neglected here for simplicity’s sake.

The range rate essentially introduces two effects on a narrowband signal: First, it

modifies the received carrier frequency, i.e., the well-known Doppler effect; and second,

it modifies the duration of the received slots and symbols. For the purposes of this

article, assume that perfect Doppler pre-compensation at the ground station is

performed both on the transmit and receive side, so the Doppler effect can be ignored.

Alternatively, the effect of the range rate on the symbol and slot duration must be

7Ranging systems require these delays to be as deterministic as possible for calibration purposes.

Therefore, system implementation is done using programmable hardware components, such as

FPGAs, for which the time delay in a given signal path is measurable during the synthesis process.
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properly characterized and accounted for when simulating and validating the

synchronous ranging mode.

To better understand this effect, consider the “time deformation” experienced by one

of the slots transmitted by the ground station under the linear range assumption (see

Figure 7). In particular, it is shown in Appendix II that, at the spacecraft, this same

slot will last

T scs =
1

1− γ
Ts ≈ (1 + γ)Ts (28)

with γ = r
c . Similarly, if the spacecraft uplink and downlink are synchronous, then the

slot arriving to the ground station via the downlink will last

T gss =
1 + γ

1− γ
Ts ≈ (1 + 2γ)Ts. (29)

GS

SC

GS

U
pl
in
k

D
ow
nlink

∆t1 = Ts

∆t2 ≈ (1 + γ)Ts

∆t3 ≈ (1 + 2γ)Ts

Figure 7. Stretching of the Duration of a PDU Due to Range Rate.

Note that this analysis is not unique to a slot. In fact, any PDU lasting T seconds

when departing the ground station will last approximately (1 + γ)T seconds when it

arrives to the spacecraft. Note also that the sign of γ dictates whether the PDU

duration increases or decreases. Indeed, if the spacecraft is going away from Earth,

then γ is positive, and thus the PDU “stretches” in time. In contrast, when the

spacecraft is headed towards Earth, γ < 0 and thus the PDU “shrinks.”8

D. Range Measurement with Spacecraft Dynamics

Now, consider the issue of recovering a range measurement from phase observables

obtained from a synchronous ranging system in the presence of spacecraft dynamics.

In this case, we know that Equation (23) will not hold in general and, consequently,

8One might argue that the explanation presented here is just a rewording of the Doppler effect.

However, this article avoids the term “Doppler effect” because it deals solely with a noncoherent

modulation in which the carrier frequency is not tracked in any way.
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the ranging problem has two parts: First, use a radiometric system to estimate τud(t);

and second, use trajectory and gravitational models to derive d(t) from the observed

values of the τud(t).

Let us first consider the problem of estimating τud(t). As indicated in [2], the ranging

system estimates the RTLT delay from the following equation

tR�

tT

ψ̇T (t)dt = ψT (tR)− ψT (tT ), (30)

where ψ̇T (t) denotes the derivative of the phase of the transmitted signal by the

ground station, which can be easily recorded by its uplink subsystem. Note that

Equation (30) is just the fundamental theorem of calculus applied to the transmitted

phase ψT (t). Furthermore, thanks to the restrictions imposed by the synchronous

ranging system, we know that

ψR(tR)β = ψT (tT ). (31)

Therefore, we can solve Equation (30) by replacing the unknown quantity ψT (tT ) by

the measurable quantity ψR(tR)β and solving the resulting equation for tT . For

example, assume that the ground station transmits an uplink optical signal where the

PPM symbols have constant duration. Then,

ψ̇T (t) =
d

dt

t

Tu
=

1

Tu
(32)

and equation (30) simplifies to

tR − tT
Tu

= ψT (tR)− ψR(tR)β. (33)

Consequently, we can obtain an estimate of the RTLT delay as

τud(tT ) = TuψT (tR)− TdψR(tR) = τ̃ud(tR). (34)

Next, we need to recover a range estimate from τud(t). To do so, Appendix III shows

that for a linear spacecraft trajectory

τud(tT ) =
1

1− γ
2d(tT )

c
+ (1 + γ)τsc (35)

τ̃ud(tR) =
1

1 + γ

2d(tR)

c
+ (1− γ)τsc. (36)

Therefore,

d(tT ) =
c

2

[
(τud(tT )− τsc)− γ (τud(tT ) + τsc)

]
(37)

d(tR) =
c

2

[
(τ̃ud(tR)− τsc) + γ (τ̃ud(tR) + τsc)

]
. (38)

14



E. Range Synchronization Marker

So far, this article has described the operation of a synchronous ranging system using

RCWs that are delimited by a special type of synchronization marker, which is called

an RSM. However, this article has not specified the RSM value, nor how they relate to

the normal CSMs already specified in the CCSDS HPE standards.

The fundamental property of a synchronization marker is that it should be easily

identifiable using a correlator. Therefore, they are typically designed so that their

autocorrelation function exhibits a large peak at zero lag and a reasonably low value

at any other lag. Formally, let a synchronization marker be defined as a sequence s of

S PPM symbols taking values 0, 1, ...,M − 1. Then the autocorrelation function for a

lag l is defined as

R[l] =

S∑
i=1

I (s[i], s[i+ l]) , (39)

where I(a, b) is an indicator function such that

I(a, b) =

1 a = b

0 a 6= b.
(40)

Note that with this definition, R[0] = S. Furthermore, to find a “good”

synchronization marker, the following figure of metric must be minimized:

ξ1 = max
l 6=0

R[l]. (41)

To design the RSM, however, another metric needs to be optimized. Namely, the

cross-correlation between the RSM and the CSM must be low so that the receiver can

easily differentiate between the two types of synchronization markers. To formalize

this concept, let srsm denote the sequence of PPM symbols of the RSM and assume

that it has length Scsm. Then, its cross-correlation with the CSM is defined as

Xrsm
csm [l] =

Scsm∑
i=1

I (srsm[i], scsm[i+ l]) . (42)

Therefore, to design the RSM, we must solve a multi-objective optimization problem

in which both ξ1 and ξ2 are minimized, with

ξ2 = max
l
Xrsm
csm [l]. (43)

To solve this problem, two options are possible. For short synchronization markers

and low M , full factorial enumeration over all possible synchronization sequences can

be performed. Each candidate RSM sequence is then evaluated against ξ1 and ξ2 and
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the best candidate is selected.9 For problems in which full factorial enumeration is

computationally intractable, I utilized a multi-objective Genetic Algorithm (MOGA)

that converges towards a set of Pareto-optimal RSMs. This MOGA was configured to

evaluate 1000 populations with 1000 candidate RSMs per population.

The results of this optimization process are provided in Figure 8, which provides a

comparison of the CSM and RSM autocorrelation as well as the cross-correlation

between the CSM and RSM.10 Observe that the RSM sequences obtained by the

MOGA exhibit an autocorrelation that is at least as good as the CSM, if not better.

Similarly, the cross-correlation between the RSM and the CSM is typically as low as

the autocorrelation of the CSM for l 6= 0, except for a couple cases where it is slightly

higher but well within acceptable operational limits.

III. Performance of a Synchronous Ranging System

This section describes the theoretical performance of an optical synchronous ranging

system. In particular, it studies the performance of the tracking loops on the

spacecraft and ground station receivers, which ultimately determine the accuracy with

which the uplink and downlink phases can be measured.

A. System Model

To model the system, assume that both the spacecraft and the ground station receiver

use a one-shot phase estimator plus a PLL to track the phase of the received signal.

This is representative, for example, of the way the phase is tracked in operational

optical receivers developed by JPL [7].

In Figure 9, ϕu(t) is the phase of the uplink signal as it arrives to the spacecraft.11

This phase is first estimated by a one-shot estimator ϕ̂osu (t′), and its output is

provided to a PLL that filters out noise and thus generates an improved estimate,

which we denote by ϕ̂u(t′). This PLL is assumed to be of second-order, and its

coefficients are calculated from the desired normalized loop bandwidth and the update

rate of the PLL according to the equations in [8]. However, higher-order PLLs can

also be modeled at the expense of increased computational complexity.

Note that in Figure 9, two time indices, t and t′, are used. They emphasize the fact

that for the system to operate, there is no need for the spacecraft to have a clock that

9As with any multi-objective optimization problem, there is no single “best” solution that minimizes

all figures of merit. Instead, the solution is a Pareto front, i.e., a set of solutions in which a metric

cannot be improved without worsening another one. Therefore, to select a final solution, it is up to

the user to express the relative preference between the figures of merit. For our purposes, I pick RSM

sequences that roughly assign equal weight to ξ1 and ξ2.

10The RSM sequences are provided in Appendix I.

11Recall here that ϕ(t) denotes a relative phase, as described in Section I.B.
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(a) HPE Telemetry, M = 4 (b) HPE Telemetry, M = 8

(c) HPE Telemetry, M > 8 (d) HPE Beacon, LDPC (128, 64)

(e) HPE Beacon, LDPC (512, 256) (f) HPE Beacon, LDPC (2048, 1024)

Figure 8. Correlation Properties of the CSM and RSM. “LDPC” denotes Low-Density Parity-Check

codes.

is synchronized with the ground-station clock. In other words, if the two clocks

experience a drift, then Figure 9 should technically be updated to include additional

blocks that model the dynamic nature of that drift. However, if we make the

simplifying assumption that t′ = t+ ∆t, where ∆t is a constant (as will be done in the

prototype described in Section IV), then the difference between t and t′ does not

meaningfully change the nature of our dynamic system and thus can be omitted from
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ϕ̂osud(t
′)

ϕ̂ud(t)

Figure 9. Synchronous Ranging System Model.

the analysis.

Because the uplink and downlink RCWs are synchronous, the phase at the ground

station receiver is equal to the sum of the phase introduced by the downlink, expressed

in uplink symbols and thus denoted by βϕd(t), and the uplink phase estimated by the

spacecraft receiver:

ϕud(t) = ϕu(t) + βϕd(t). (44)

Therefore, the phase estimator and PLL at the ground station track the

uplink-plus-downlink dynamics to obtain the two-way phase estimate ϕ̂ud(t).

To quantify the performance of the one-shot estimator on the uplink and downlink, we

assume that it can be modeled as

ϕ̂os(t) = ϕ(t) + εos(t), (45)

where εos(t) denotes a possibly stochastic error of the phase estimate produced by the

one-shot estimator. This error has a certain mean, or bias, as well as a given variance,

which we will study in the next section. On the other hand, the uplink and downlink

PLLs are assumed to be implemented digitally and thus are modeled using their

discrete-time closed-loop transfer functions Hu(z) and Hd(z), which are expressed in

the Z-transform domain. Therefore, the overall system can be modeled as shown in

Figure 10.

+
Uplink PLL

Hu(z)
+ +

Downlink PLL

Hd(z)

εu(z)

ϕu(z)
ϕ̂osu (z) ϕ̂u(z)

βϕd(z) βεd(z)

ϕ̂osud(z)
ϕ̂ud(z)

Figure 10. Synchronous Ranging System Model in the Z-Transform Domain.

Also, by the principle of superposition, the overall system dynamics behavior are given

by

ϕ̂u(z) =Hu(z) [ϕu(z) + εu(z)] (46)

ϕ̂ud(z) =Hd(z)Hu(z) [ϕu(z) + εu(z)] + βHd(z) [ϕd(z) + εd(z)] . (47)

Therefore, the phase error on the uplink, and the uplink plus the downlink, becomes

eu(z) = ϕu(z)− ϕ̂u(z) = [1−Hu(z)]ϕu(z)−Hu(z)εu(z) (48)

eud(z) = ϕud(z)− ϕ̂ud(z) = [1−Hu(z)Hd(z)]ϕu(z) + [1−Hd(z)]βϕd(z)−

Hd(z) [Hu(z)εu(z) + βεd(z)] ,
(49)
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and, consequently, the system behavior over time can be recovered by taking the

inverse Z-transform of the derived signals.

Note that, as currently stated, this model is only valid if the uplink and downlink

PLLs have the same loop update rate (otherwise, their discrete transfer functions

cannot be directly multiplied). To circumvent this problem, two scenarios are

considered: First, if the ratio between the uplink and downlink PLL loop rate is

rational, then the transfer function of the overall system can be obtained simply by

upsampling the transfer function of the PLL running at the lowest rate. For instance,

consider the case where the uplink PLL runs at a slower rate than the downlink PLL.

Then the analysis previously developed remains valid, but Hu(z) needs to be

substituted by Hu(z1/β) with β defined as before.

Alternatively, consider now a case where 1
β is not a rational number. Then the system

performance can approximated by first upsampling Hu(z) by a factor K =
⌊
1
β

⌋
and

then adjusting the rate of the resulting transfer function to the appropriate

non-fractional value using a zero-order hold operation.

B. Bias of the Phase Estimate

This section focuses on understanding the sources of bias in the synchronous ranging

system. In general, these biases are introduced by the combination of the one-shot

phase estimator and the PLL so that

ε̄ = ε̄os + ε̄pll. (50)

Note that for the downlink, this bias will be sum of bias in the uplink and the bias on

the downlink, as expected.

Let us first consider the bias introduced in the uplink portion of the system and

assume that the one-shot phase estimator integrates the received signal for Tint

seconds prior to returning a phase estimate. Let t1 and t2 = t1 + Tint denote the start

and end time of this integration period, respectively. Then, using the results from

Appendix III, we know that

τu(t1) =
1

1− γ
d0 + γt1

c
(51)

τu(t2) =
1

1− γ
d0 + γt2

c
=

1

1− γ
d0 + γ(t1 + Tint)

c
. (52)

Therefore, the maximum phase error of the one-shot estimator is proportional to the

difference in one-way light-time (OWLT) delay between the start and end of the

integration period:

∆ϕu ∝ τu(t2)− τu(t1) =
γ

1− γ
Tuint (53)

∆ϕd ∝ τd(t2)− τud(t1) ≈ 2γ

1− 2γ
T dint, (54)
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where Tuint and T dint denote the uplink and downlink receiver integration times,

respectively. Consequently, the steady-state bias introduced by the one-shot estimator

is

ε̄osu =
∆ϕu
Tu

=
γ

1− γ
Nu
int (55)

ε̄osud =
∆ϕu
Tu

+ β
∆ϕd
Td

=
γ

1− γ
Nu
int + β

2γ

1− 2γ
Nd
int (56)

with Nu
int and Nd

int equal to the number of PPM symbols integrated on the spacecraft

and ground station receiver, respectively. Observe that both ε̄osu and ε̄osud are now

expressed in units of uplink PPM symbols.

On the other hand, as shown in [8], the PLL may also introduce a bias in the form of a

steady-state phase error. For a second-order PLL, this steady-state phase error is

shown to be equal to [8]

ε̄pll ∝
T 2
int

Ki
τ ′′u (t), (57)

where Tint denotes the PLL update rate, Ki is the PLL integration constant, and

τ ′′u (t) is the second derivative of the OWLT delay. Fortunately, if d(t) is a linear

function, then τ ′′u (t) = 0 and the PLL will not introduce any bias in the ranging

system. Therefore, we conclude that

ε̄u =ε̄osu (58)

ε̄ud =ε̄osud. (59)

Finally, corrections to this bias estimate are necessary if either the transmitter or the

receiver apply range-rate compensation. For example, Appendix IV shows that if the

receiver post-compensates the signal, then the formulas derived in this section are

approximately correct, but the residual range rate εγ = γ − γ̂ must be used, where γ̂

denotes the range rate predict obtainable from the spacecraft trajectory.

C. Variance of the Phase Estimate

Consider now the variance of the phase estimate resulting from combining a one-shot

estimator and a PLL. To do so, we must invoke once again the principle of

superposition of linear systems and constrain ourselves with just sources of stochastic

randomness. These include jitter in the photon-arrival measurement introduced by the

optical detector, as well as randomness caused by background noise.

Figure 11 shows a model of the sources of randomness in a two-way synchronous

ranging system. In particular, we use the following notation:

� σ2
du denotes the jitter introduced by the uplink photon detector, which we

assume known a priori and expressed in units of uplink symbol time (i.e., if jitter
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is expressed in seconds, divide the value by the uplink symbol duration and

square it).

� σ2
nu denotes the variance of the one-shot phase estimator due only to the uplink

channel signal and noise conditions.

� σ2
u denotes the variance of the phase estimate provided by the one-shot

estimator on the uplink receiver.

� kuσ
2
u denotes the variance of the phase estimate provided by the PLL of the

uplink receiver. The constant ku is determined by Hu(z), as shown later in this

section.

� β2σ2
dd denotes the jitter introduced by the downlink photon detector, which we

assume known a priori and expressed in units of uplink symbol time. In other

words, if the jitter is specified in seconds, divide the value by the downlink

symbol time and multiply by β, then square the result.

� β2σ2
nd denotes the variance of the one-shot phase estimator due only to the

downlink channel signal and noise conditions, expressed in units of uplink

symbol time.

� σ2
d denotes the variance of the phase estimate provided by the one-shot estimator

on the downlink receiver.

� kdσ
2
d denotes the variance of the phase estimate provided by the PLL of the

downlink receiver. The constant kd is determined by Hd(z), as shown later in

this section.

Uplink

Photon

Detector

+
Uplink PLL

Hu(z)
+ +

Downlink PLL

Hd(z)

Downlink

Photon

Detector

σ2
du

σ2
nu

σ2
u kuσ

2
u

β2σ2
dd

β2σ2
nd

σ2
d

kdσ
2
d

Figure 11. Variance Sources in a Synchronous Ranging System.

The variance of the one-shot estimator depends on the slot-synchronization algorithm

used at the uplink and downlink receivers. For example, let us assume that both of

them use a photon-counting detector with the Maximum-Likelihood (ML) estimator

from [7] and [9]. Then it is shown in [9] that a lower bound on the variance of this

estimator, measured in slots, is given by the Cramér-Rao Bound (CRB):

σ2
n∗ ≥ δ(1− δ)

K2
s +MKsKb +M2K2

b

K2
s

(
Nint

M Ks + 2NintKb

) =
δ(1− δ)
NintTs

λ2s + λsλb + λ2b
λ2s (λs + 2λb)

, (60)

where

� ∗ in the subscript is used to indicate that the formula can apply to either the

uplink or downlink if the corresponding values for the other parameters are used;
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� δ is the fractional component of the timing offset at the receiver;

� λs and Ks denote the number of signal photons per second and per slot,

respectively;

� λs and Kb denote the number of background noise photons per second and per

slot, respectively;

� M is the PPM modulation order;

� and Nint is the number of symbols in one integration period.

Note that, as stated, this CRB depends on a parameter that cannot be known or

predicted accurately in real operations, namely the fractional timing offset δ. There

are two options to circumvent this problem: On the one hand, we can calculate the

expectation over δ assuming its value has a uniform distribution between 0 and 1. On

the other hand, we can calculate the worst-case CRB by calculating the value of δ that

maximizes it. This latter approach leads to

σ2
n∗ ≥

1

4

1

(M + P )2
1

NintTs

λ2s + λsλb + λ2b
λ2s (λs + 2λb)

, (61)

whereas the expectation approach leads to the same result but with a factor 1/6

instead of 1/4. Furthermore, in this latter expression we have applied a correction

factor of 1/(M + P )2 so that the resulting variance is expressed in units of PPM

symbols instead of slots.

Next, we focus our attention on estimating the expected variance at the output of the

PLL. More specifically, this section explains how to calculate the constants ku and kd

that relate the input and output variance depending on the PLL closed-loop transfer

functions. Note that if either Hu(z) or Hd(z) have been upsampled or resampled to

rate-match the uplink and downlink PLLs as explained in Section III.A, then the PLL

transfer functions resulting from that operation must be used instead. However, the

notation does not reflect this change for simplicity’s sake.

It is well known that the PLL can be viewed as a low-pass filter. Therefore, the

variance of the phase estimator is directly related to the uplink loop noise bandwidth,

which, in the case of the uplink, is defined as

2B =

1/2Tint�

−1/2Tint

|Hu(ej2πfTint)|2df, (62)

where B denotes the one-sided PLL loop bandwidth. Using the transformation

z = ej2πfTint , this equation can be rewritten as

2BTint =
1

2πj

�
C

Hu(z)Hu(z−1)z−1dz, (63)
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where C is a closed path along the unit circle and, thus, z∗ = z−1. We can now use

the residue theorem to obtain

2BTint =
∑
∀zi

Res
(
Hu(z)Hu(z−1)z−1, zi

)
, (64)

where the summation is performed over all poles zi of Hu(z), and Res (f(z), c) denotes

the residue of the function f(z) with respect to the pole c:12

Res (f(z), c) =

 lim
z→c

(z − c)f(z) if c is a simple pole

1
(n−1)! lim

z→c
dn−1

dzn−1 (z − c)nf(z) if c is a pole of order n.
(65)

For example, if Hu(z) is a second-order PLL, it is shown in [8] that its closed-loop

transfer function is equal to

H(z) =
(Kp +Ki)z −Kp

z2 + (Kp +Ki − 2)z − 1 +Kp
, (66)

where Kp and Ki denote the proportionality and integrate constants of the PLL.

Therefore, following the procedure outlined above, results in [8]

k∗ = 2BTint =
2K2

p + 2Ki +KpKi

Kp(4− 2Kp −Ki)
, (67)

where ∗ indicates that the formula is valid for both the uplink and the downlink

provided the corresponding values for each link are used. Finally, once ku and kd have

been determined, the variance of the phase estimate at the output of the synchronous

ranging system will be

σ2
ud = kdku

(
σ2
du + σ2

nu

)︸ ︷︷ ︸
Uplink contribution

+ β2kd
(
σ2
dd + σ2

nd

)︸ ︷︷ ︸
Downlink contribution

. (68)

Note that σ2
ud is now expressed in units of uplink symbols. Note also that for a

well-designed system, both the PLL of the uplink and downlink receivers are typically

sized so that BuTint ≤ 0.1. Consequently, ku and kd are approximately ≤ 0.2 and,

therefore, kdku � kd. Therefore, if both the uplink and downlink operate at

approximately the same symbol rate, then the ranging performance is dominated by

the noise conditions on the downlink. If, on the other hand, the downlink runs several

orders of magnitude faster than the uplink, then ku � β2 and noise on the uplink

becomes the limiting factor.

D. Accuracy and Precision of the Range Estimate

The output of the PLL synchronizer can be used to estimate both the PPM symbol

clock and the phase of the received signal. In particular, once per update time of the

12The poles of Hu(z−1) do not contribute to the contour integral because they lie outside of the unit

circle. Similarly, there is no pole at z = 0 due to the z−1 term [8].
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PLL, the slot synchronizer generates an estimate of the relative phase ϕ̂R. We denote

the set of discrete samples generated by the PLL as {ϕ̂R}.

Any given sample in {ϕ̂R} is computed by integrating the received signal during

NintT seconds, where Nint has been configured so that the change in OWLT during

this integration period is negligible (e.g., 1/10 of a slot). Therefore, the PPM symbol

associated with the k -th sample of {ϕ̂R} is approximately equal to the mid-point of

the integration period. Thus, at the output of the slot synchronizer we can construct a

time series
{
t̂R, ψ̂R

}
where the k -th entry is equal to13

t̂R[k] =T (k + ϕ̂R[k]) (69)

ψ̂R[k] =(k + 1)Nint

2 . (70)

These measurements can now be used directly in Equation (30) to recover the range

between the spacecraft and the ground station, or interpolated as necessary if range

estimates are required at higher sampling rates.

The equations presented in this section also clarify how the error analysis from

Sections III.B and III.C affects the range measurement. In particular, the timing error

due to imperfect PLL tracking will be

εtR = t̂R − tR = Tuεud, (71)

where εud = ϕ̂ud − ϕud, and we use the uplink PPM symbol plus guard time Tu as a

multiplicative factor, because throughout this section, we have consistently used

uplink PPM symbols as our unit of choice. Therefore, the bias and standard deviation

in the RTLT measurement is simply14

ε̄τ̃ud
=Tuε̄ud (72)

στ̃ud
=Tuσud. (73)

Finally, to calculate the uncertainty of the range estimate, additional factors must be

considered (e.g., speed of light being nonconstant in Earth’s atmosphere). For

example, in the simple case of linear motion as assuming no delays onboard the

spacecraft, we can use Equation (38) to get

ε̄range = c
2Tu(1 + γ)ε̄τ̃ud

(74)

σrange = c
2Tu(1 + γ)στ̃ud

, (75)

where the value of γ can be approximated by its predict γ̂ or estimated in conjunction

from the range from the available data. Note that if rate post-compensation is

applied, then this formula is modified to only account for the residual range rate

experienced by the PLL synchronizer, as shown in Appendix IV.

13This time series is assumed to use zero-based indexing.

14Note that the ranging system measures τ̃ud(tR) rather than τud(tT ), but the latter can be recovered

in post-processing.

24



IV. Prototype Description

This section describes a software-based prototype of the synchronous ranging system

described in Section II. In particular, the discussion is divided in two parts. First, this

section discusses the overall prototype architecture, including special precautions that

must be taken into account when working in simulated time. Second, it details the

different functionality that needs to be implemented in the prototype in order to fully

exercise the synchronous ranging system.

A. Prototype Architecture

Figure 12 provides a high-level block diagram of all the functionality that needs to be

implemented to prototype a synchronous ranging system. This includes the ground

station uplink and downlink subsystems, as well as the spacecraft transmit and receive

subsystems, and the uplink and downlink optical channels. Details on each of them

are provided later in this section.
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Figure 12. High-Level Functionality for a Synchronous Ranging System.

Figure 12 shows that a common frequency and timing reference must be available at

the ground station to recover range measurements. While this is necessary in a

real-life, hardware-based implementation of the system, a software simulation does not

need to include it because a common simulation time reference across multiple

simulation components can be easily shared.

Finally, because the goal of a ranging system is not to transmit data but rather to

obtain observables that can then be converted into estimates of the RTLT delay, the

prototype does not require actual bits to be encoded and decoded. Instead, the focus

of implemented functionality is related to slot, symbol, and RSM synchronization.
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B. Prototype Functionality

1. Spacecraft vs. Ground-Station Clock

Care must be exercised when prototyping a synchronous ranging system in simulation

to ensure that “additional” (and unavailable) information is not provided to the

spacecraft receiver. In particular, in a real system implementation, the spacecraft

clock is asynchronous from the ground-station clock and regulated independently by

the spacecraft ultra-stable oscillator (USO), which drifts randomly. Therefore, when

working in a simulated environment, additional processing effort must be spent to

ensure that a common time reference is not shared between the ground station and the

spacecraft.

To achieve that goal, the prototype defines separate measures of time for the

spacecraft and ground station (see Figure 12). In other words, it is as if the system

has two units of time, “spacecraft seconds” (denoted here by tsc) and “ground-station

seconds” (denoted by tgs), and the relationship between the two variables establishes

the level of synchronicity between the spacecraft and the ground-station clock.

For example, if tsc = tgs, then the spacecraft and ground-station clocks are

synchronized—a condition that is not realistic but is useful for debugging purposes.

Alternatively, one might select a simple time-shift to model a lack of synchronicity, i.e.,

tsc = tgs + ∆t, (76)

where ∆t is an arbitrary constant that is selected randomly prior to the start of the

simulation. Clocks are also known to have long-term frequency drifts. While this could

also be modeled in the prototype, it was left out of scope for the sake of simplicity.

In the prototype, the transformation between tsc and tgs is applied by the uplink and

downlink optical channels. In particular, the uplink optical channel takes as input the

set of times at which a PPM symbol starts departing from the ground station, in

ground-station seconds, and transforms that value to the time of arrival of different

photons for that slot, corrected by the uplink OWLT delay and expressed in spacecraft

seconds. Similarly, the downlink optical channel takes as input the departure times of

downlink PPM symbols in spacecraft seconds and outputs photon-arrival times at the

ground station, corrected by the downlink OWLT delay and expressed in

ground-station seconds.

2. Ground Station Uplink Subsystem

The ground-station uplink subsystem takes as input a set of configuration parameters

and generates a sequence of PPM symbols that are compatible with either the CCSDS

HPE telemetry standard or the CCSDS HPE beacon-plus-accompanying-data

standard. The exact set of processing steps performed to generate this sequence of

PPM symbols is provided in [5].
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The prototype also includes an extra configuration parameter to indicate the number

Nu of SMCWs per RCW. Similarly, it also includes the necessary functionality to

replace the CSM in 1 out of Nu SMCWs with the corresponding RSM, as provided in

Appendix I.

Finally, the ground-station uplink subsystem also determines the instants of time at

which each PPM symbol departs from the ground station. For the sake of simplicity, I

assume these to not be range-rate pre-compensated, so consecutive PPM symbols

depart after T = (M + P )Ts seconds have elapsed.

3. Uplink Channel

The uplink channel takes as input the set of PPM symbols transmitted by the ground

station, as well as the time they start departing, and calculates photon-arrival times

that are Poisson-distributed and corrected by the OWLT. In particular, the uplink

channel performs the following steps:

1. Calculate the number of noise photons that arrive in each empty slot by

sampling a Possion distribution with mean Kb.

2. Calculate the number of signal photons that arrive in each signal slot by

sampling a Possion distribution with mean Ks +Kb.

3. Calculate the time of departure of all photons within a given slot by sampling a

uniform distribution between 0 and Ts as many times as indicated by the result

of steps (1) and (2).

4. For each photon departure, calculate the photon arrival as tarr = tdep + τ(tdep).

For simplicity’s sake, the prototype assumes that both τu(t) = τ0 + γt and

τd(t) = τ0 + γt so that τud(t) = τu(t) + τd(t+ τd(t)) = (2 + γ)(τ0 + γt). This is

not exactly the same result obtained under linear motion in Appendix III, but it

is a good approximation when γ � 1 and allows us to implement a single

channel function and reuse it for both the uplink and the downlink.

5. Transform the time of arrival of each photon from ground-station seconds to

spacecraft seconds by applying a ∆t correction.

6. Transform the time of arrival of each photon from spacecraft seconds to a sample

index by multiplying it by 64 GHz. This last step is optional and allows us to

store photon arrivals as unsigned integers for increased precision, rather than

rely on floating point numbers. Furthermore, this conversion provides a time

resolution of 15.62 ps, which is sufficient to achieve a ranging accuracy of 4 mm,

which is negligible for the purposes of the prototype.
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4. Spacecraft Receiver Subsystem

The spacecraft receiver implemented in the prototype is based on the architecture

developed at JPL for the Deep Space Optical Communications (DSOC) experiment. It

is based on a photon-counting detector that is connected to a time-tagging device.

This time tagger outputs a timestamp every time a photon arrives. The collected

timestamps are then processed to achieve slot, symbol, and RSM synchronization.

Figure 13 depicts the different parts of the receiver implemented in the prototype.

Blocks color-coded in gray are not explicitly included in the simulation because time

tags for the photon arrivals are generated by the optical uplink and downlink

channels.

Detector Array

Time-tagger
Range-Rate

Compensation

Slot

Synchronizer

CSI

Estimator

Symbol

Clock

Recovery

Super-Symbol

Clock

Recovery

RSM/CSM

Synchronizer

Slot LLR

Generator

To Spacecraft

Transmitter

To Spacecraft

Transmitter

Photons

Photon

Arrival

Times

{tp}
K̂s, K̂b û

Figure 13. HPE Receiver Architecture. “CSI” and “LLR” stand for Channel State Information and

Log-Likelihood Ratio, respectively.

Note that in Figure 13, the spacecraft receiver provides the spacecraft transmitter

with both the symbol clock and the RSM clock. This contradicts Figure 12, in which

only the RSM clock is shared between the transmitter and receiver. Technically, while

only the latter is needed, the prototype actually shares both clocks to improve the

level of synchronization between the spacecraft uplink and downlink clocks. However,

neither of those clocks is shared with the parts of the prototype that implement the

ground station, thus ensuring that there is no synchronicity between the spacecraft

and ground station.

Finally, a detailed explanation of the different algorithms used in the receiver is

beyond the scope of this paper. Instead, see references [7] and [10] for details on the

signal-processing steps performed in each block of Figure 13. Similarly, details on

range-rate compensation are provided in Appendix IV.

5. Spacecraft Transmitter Subsystem

The spacecraft transmitter is implemented using the same functionality as the

ground-station uplink subsystem. However, the time of departure of each downlink

PPM symbol is regimented by the clock recovered from the spacecraft receiver, which

is shown in Figure 13 in blue. Therefore, the slot departure times are no longer equal
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to T = (M + P )Ts seconds but rather are time-varying and determined by τud(t).

6. Downlink Channel

The downlink channel uses the same procedures as the uplink channel, except it

converts from spacecraft seconds to ground-station seconds by applying the inverse

time offset ∆t. It uses the same linear approximation to calculate the time of arrival of

each photon at the receiver so that the total RTLT delay becomes

τud(tT ) = (2 + γ) (τ0 + γtT ) , (77)

which is approximately equal to the exact τud(tT ) expression provided in Appendix III.

7. Ground-Station Downlink Subsystem

The ground-station downlink subsystem is implemented using the same functional

blocks as the spacecraft uplink receiver. However, the configuration parameters

affected by the spacecraft range rate are modified to account for the fact that, on the

downlink, the apparent range rate experienced by the receiver is twice the actual

range rate.

C. Prototype Implementation

The prototype described in this section has been implemented in MATLAB using a

combination of functions and classes, some of which have been compiled to C for faster

execution. All inputs are provided via a single configuration file, which returns a

structure that contains general parameters (e.g., location where results should be

stored) as well as parameters specific to the uplink and downlink transmitter, channel,

and receiver. This structure is then populated with additional values and checked for

consistency prior to starting the simulation.

The prototype can operate in two modes, one mostly intended for debugging purposes

and another that has been optimized to perform long simulation runs. In debug mode,

the spacecraft and ground-station clocks are synchronized to facilitate debugging.

Furthermore, the entire simulation is run sequentially and all information is stored in

memory. Consequently, the amount of random-access memory (RAM) in the host

computer becomes the limiting factor that dictates whether a simulation can be

performed or not. Note that this is particularly limiting when simulating links with

high modulation orders (as is the case for deep space operations) and high signal and

noise conditions. Indeed, in these circumstances the number of photons simulated

becomes increasingly large, thus making it more likely that the host will run out of

RAM.

The secondary mode of operations is based on MATLAB classes. This allows the

prototype to run in an iterative fashion, using the internal class variables to store the
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necessary state information across iterations. Furthermore, in this mode of operations

the prototype lifts the restriction that the spacecraft and ground-station clocks be

synchronized, thus allowing us to better simulate the actual conditions under which

the ranging system would operate.

Finally, the output of the simulation includes the following files:

� Uplink-transmitted symbols: This file contains a list of all PPM symbols and

their departure times in ground-station seconds. The file also includes a marker

to indicate the start of each RCW.

� Uplink-received photons: This file contains a list of all photon arrivals to the

spacecraft, corrected for the OWLT and expressed in spacecraft seconds.

� Downlink-transmitted symbols: This file contains a list of all PPM symbols to

be sent in the downlink. The departure times may optionally be recorded as well

in spacecraft seconds.

� Downlink-received photons: This file contains a list of all photon arrivals at the

ground station in ground-station seconds.

Additionally, all information produced by the ground station is stored, including the

recovered symbol and super-symbol clock, as well as the measured time of arrival of

each RSM.

V. Results

A. Scenario Description: The DSOC Terminal

To test the synchronous ranging simulator, I collected information on the planned

trajectory for the DSOC terminal and the Psyche spacecraft. In particular, I obtained

copies of the spacecraft trajectory and its communications subsystem and calculated,

from them, realistic uplink and downlink channel conditions.

Figure 14 shows the range and range rate profile for the Psyche spacecraft over time.

Observe that during certain phases of the spacecraft’s range rate normalized by the

speed of light, γ, can be as high as 7.7 · 10−5, approximately, so the duration of a slot

as received by the ground station increases by 0.0154%. However, in the simulations I

assume that the receiver post-compensates the range rate with sufficient accuracy so

that the residual range rate is just 100 m/s, approximately, a value that is realistic for

mission phases in which no impulsive maneuvers or planetary entries are being

performed.

To quantify the uplink channel conditions, I assumed that the uplink is established

between the JPL Optical Communications Telescope Laboratory (OCTL) and the

DSOC terminal. The former has a 1-m telescope connected to a system of lasers
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Figure 14. Range and Range Rate for the Psyche Spacecraft.

capable of providing 5 kW of optical power, while the latter carries a 22-cm aperture.

For the downlink, I assumed transmission to the Palomar Observatory telescope,

which is equipped with a 5-m aperture. All these inputs were provided to the JPL

Strategic Optical Link Tool (SOLT) [11], which then estimated the optimal

modulation parameters to maximize the link data rate (and thus not necessarily

match the actual settings of DSOC when in flight).

Figures 15a and 15b show the estimated performance of the uplink and downlink,

respectively. For the uplink, I report the Sun-probe-Earth (SPE) angle, while on the

downlink I provide estimates of the Sun-Earth-probe (SEP) angle. In both cases, I

also provide estimates of the signal and noise photon flux rate λs and λb for the first

two years of the mission, as well as estimates of the achievable data rate.

This information can now be used to obtain a range-error estimate if I assume that

both the spacecraft and the ground station utilize a photon-counting receiver like the

one described in Section IV.15 Figure 16 shows the results of this analysis assuming

that the detectors onboard the spacecraft and the ground station have a jitter equal to

10% of the minimum supportable slot duration [4]. Results indicate that the ranging

accuracy is mostly driven, as expected, by the distance between the transmitter and

receiver, as well as the SEP angle.

15The author is aware that a real spacecraft receiver would not necessarily utilize a photon-counting

device as a ground station would, but I used this assumption to simplify the prototype implementation.
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(a) Uplink Channel between OCTL and DSOC

(b) Downlink Channel between DSOC and Palomar

Figure 15. Uplink and Downlink Channels for DSOC.
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Figure 16. Expected DSOC Range Uncertainty.

Using this information, I construct two test cases to test and validate the synchronous

ranging prototype. The first test illustrates the performance of the system during its

transient state and is compared against the theoretical performance derived in

Section III. It exercises the synchronous ranging system at high-signal and low-noise

conditions, thus providing a best-case estimate of the overall system performance.

However, it is not necessarily representative of DSOC operations.

The second case study, on the other hand, is selected to illustrate ranging performance

with DSOC when operating at 1 AU. It exercises the ranging system assuming that

both the uplink and downlink use HPE telemetry. Furthermore, I assume that both

the spacecraft and the ground station perform range-rate post-compensation, resulting

in a residual range rate of 150 m/s approximately, which is reasonable given the

expected accuracy of the DSOC trajectory predicts.
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B. Test Case 1: Validation

1. Inputs

In this validation exercise, I considered a system in which both uplink and downlink

transmit use HPE telemetry. The uplink data rate is 1 Mbps approximately, while the

downlink data rate is 33 Mbps. Note that this configuration does not necessarily

match the expected DSOC operations. Instead, in this test I seek to exercise all the

functionality of the prototype under benign channel conditions, which allows me to

easily detect errors in the prototype and provides an estimate for the best-case range

error performance.

The exact configuration parameters used during the simulation are provided in

Table 1. Note that in this scenario, Ks, Kb, and the range rate were obtained from

Figures 14, 15a, and 15b based on the predicted trajectory and signal-flux conditions

on October 9, 2022, which results in fairly high signal-to-noise conditions. Thus, I only

require the receiver to integrate 512 PPM symbols prior to obtaining a phase estimate.

Table 1. Configuration Parameters for Test Case 1.

Parameter Uplink Downlink Units

Signal photons per slot (Ks) 10.24 21.44 photons/slot

Noise photons per slot (Kb) 0.064 0.008 photons/slot

Residual range rate (r − r̂) 125 125 m/s

Slot width (Ts) 64 2 ns

Modulation order (M) 16 16 -

Repeat factor (Q) 1 2 PPM symbols

Code rate 1/3 2/3 -

Information rate 1.03 33.08 Mbps

No. of CW per RCW (N) 1 16 -

No. symbols integrated (Nint) 512 512 PPM symbols

Note that I somewhat arbitrarily set the repeat factor of the downlink to Qd = 2. This

is not really necessary because, as previously stated, the signal conditions are

favorable, and thus there is no need to artificially reduce the data rate by a factor of 2

in order to increase the number of photons per received symbol. However, this setting

allows one to test the simulator functionality that recovers the timing of each

super-symbol, a step that would not be required if both uplink and downlink had the

repeat factor set to 1.

With the configuration of Table 1, each uplink codeword lasts for 4.85 ms,

approximately. Furthermore, because each RCW only contains one uplink codeword,

this time is also equal to the duration of a RCW. On the other hand, each downlink
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codeword only lasts 0.30 ms, so 16 codewords are necessary to create a ranging

codeword that lasts for 4.85 ms.

Finally, combining the channel conditions on October 9, 2022 together with the uplink

configuration parameters of Table 1 and the equations presented in Section III allows

us to calculate the expected range precision for the scenario. In particular, the

theoretical results indicate that a range error of 1.7 cm should be expected.

2. Results

The results of this analysis are provided in Figure 17, which shows the error at the

receiver for both the uplink and downlink channel. Three figures of merit are

provided: error in slot phase estimation, error in detection of the start of a

super-symbol, and error in detection time of an RSM. For the first metric, three plots

are provided: the slot-synchronization error as measured during the simulation; the

expected error from the theoretical analysis in Section III; and the expected

steady-state error due to the ML estimator, also provided in Section III.

Observe that the agreement between the simulation results and the analytical results

is excellent, both in terms of the steady-state error and the transient behavior of the

one-way and two-way synchronous ranging systems. In both cases, the receiver clearly

synchronizes its slot clock to the incoming signal and tracks the residual range rate at

the expected steady-state error. Furthermore, the steady-state RSM timing error

(expressed in meters) at the ground station receiver (i.e., both uplink and downlink) is

as low as 1 mm, indicating that the performance of the system is excellent (for

reference, a ranging error of 1 m is typical for deep space navigation with the DSN). In

fact, in this scenario the measured ranging error is so small that it is likely that

calibration errors not modeled in the simulation would become dominant in actual

operations.

C. Test Case 2: HPE Telemetry on Uplink and Downlink

1. Inputs

This test case exercises a synchronous ranging system under representative deep space

conditions. In particular, I assume that a ranging measurement is to be obtained with

DSOC when operating at 1 AU on February 25, 2023. The exact simulation

parameters are provided in Table 2. Compared to the previous test case, the PPM

modulation order has been increased to M = 128, the maximum setting supported by

DSOC, and the integration time has been increased to 2048 PPM symbols. Note that

this increase is possible because, as previously mentioned, the trajectory predicts

provide a range-rate estimate that is accurate to 150 m/s approximately, and both the

spacecraft receiver and the ground station receiver implement range-rate

post-compensation.
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(a) Phase Error in the Slot Synchronizer

(b) Super-Symbol Timing Error

(c) RSM Timing Error

Figure 17. Results for Test Case 1.

The result of this configuration is an uplink that operates at 15 kbps approximately,

while the downlink operates at 3.6 Mbps. Thus, synchronicity between the uplink and
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Table 2. Configuration Parameters for Test Case 2.

Parameter Uplink Downlink Units

Signal photons per slot (Ks) 6.86 1.34 photons/slot

Noise photons per slot (Kb) 0.47 0.04 photons/slot

Residual range rate (r − r̂) 125 125 m/s

Slot width (Ts) 512 4 ns

Modulation order (M) 128 128 -

Repeat factor (Q) 2 1 PPM symbols

Code rate 1/3 1/3 -

Information rate 0.014 3.6 Mbps

No. of CW per RCW (N) 1 256 -

No. symbols integrated (Nint) 2048 2048 PPM symbols

downlink clocks must be maintained despite the fact that there are three orders of

magnitude difference between the uplink and downlink data rate. Also, the duration of

one uplink CSM-marked codeword is 356.5 ms approximately, while a downlink

codeword only lasts for 1.392 ms. Therefore, each downlink RCW will contain 256

codewords.

The expected performance of the system can be computed using the equations

provided in Section III, which results in a range uncertainty estimate of 2.23 m, a

value that is significantly larger than in the previous test case due to reduced signal

conditions on the downlink.

Finally, I assume that at the start of the ranging pass, the spacecraft is at 1 AU from

the ground station. Therefore, the initial OWLT is 498.66 seconds approximately. In a

full ranging system, the time of detection of the RSMs is used to disambiguate the

range to the spacecraft. However, for the purposes of this prototype, I assume that

this step is not necessary and instead focus only on the ability of the system to track

the spacecraft dynamics modulo the uplink symbol time. In other words, I set the

initial OWLT to 498.66 s modulo the uplink symbol time, i.e., 2.56 · 10−7.

2. Results

The range error resulting from the synchronous ranging system is plotted in Figure 18

for a total simulation of two minutes approximately. Additionally, the theoretical

estimates for the 1-sigma and 3-sigma range precision are provided for reference. Note

that to construct Figure 18, the bias in the range estimate introduced by the

synchronous ranging system has already been removed, so the provided values

represent the residual error due to stochastic sources.

Results indicate that it takes approximately a minute to a minute and a half for the
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Figure 18. Expected DSOC Range Uncertainty.

PLL in the ground station to fully lock onto the downlink signal. Once lock is

achieved, the ranging system provides estimates of the spacecraft range that agree well

with the expected system performance.

VI. Conclusions and Future Work

This article describes a synchronous optical ranging system that can be used to

determine the range between a spacecraft and a ground station when both the uplink

and downlink communications are established using an optical link. In particular, it

provides a description of the concept of operations and which parts of the CCSDS

protocol stack need to be modified to be able to support simultaneous ranging and

data transmission. This article also derives theoretical equations to determine the

expected system performance (range precision and accuracy) as a function of the

optical link budget parameters. It also describes a software-based prototype that

demonstrates its operation.

This article presents results for two scenarios that are representative of significantly

different operational conditions. The first scenario is used as an initial validation

exercise for the software prototype and thus assumes favorable signal and noise

conditions. As a result, the ranging system is able to recover range estimates with

residual errors well below 1 m. The second scenario, on the other hand, shows the

performance in a more challenging scenario in which the spacecraft is at 1 AU from

the ground station. In this case, ranging errors on the order of ∼1 m are expected

based on the derived theoretical results, a value that agrees well with the simulations.
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APPENDICES

I. Definition of the Range Synchronization Marker

This appendix provides the range synchronization markers obtained while designing

the synchronous ranging system proposed in this article. Their values depend on the

CSM standardized in [5] as follows:

For the HPE telemetry signaling format, and for M = 4, the RSM sequence is

[3, 0, 2, 2, 3, 0, 1, 1, 2, 3, 1, 3, 1, 3, 0, 2, 2, 0, 3, 3, 0, 3, 1, 2].

For the HPE telemetry signaling format, and for M = 8, the RSM sequence is

[1, 4, 6, 3, 3, 0, 7, 2, 6, 0, 5, 7, 3, 4, 1, 6].

For the HPE telemetry signaling format, and for M > 8, the RSM sequence is

[10, 9, 10, 10, 8, 7, 1, 4, 5, 6, 15, 13, 0, 7, 6, 8].

For the HPE beacon plus accompanying data with LDPC (128, 64), the RSM

sequence is 0x928F in binary.

For the HPE beacon plus accompanying data with LDPC (512, 256), the RSM

sequence is 0x928F in binary.

For the HPE beacon plus accompanying data with LDPC (2048, 1024), the RSM

sequence is 0xDE255C870966485D in binary.

II. Slot Deformation with Spacecraft Dynamics

This appendix derives equations for the time deformation experienced by a slot of

duration Ts transmitted from a ground station, coherently turned around by a

spacecraft and received by the same ground station. Throughout the derivation it is

assumed that the spacecraft range is linear with respect to the ground station and

restrict the analysis to a universe in which relativistic effects are neglected.

Figure 19 shows a diagram indicating the different events that occur when sending a

single slot from a ground station to a spacecraft. The slot starts departing the ground

station at time t0 and lasts for Ts. It propagates towards the spacecraft at the speed of

light c. Therefore, it arrives at the spacecraft when d(t) = pu(t), where pu(t) denotes

the position of the electromagnetic wavefront as a function of time. This yields

t1 =
1

1− γ

(
d0
c

+ t0

)
(78)

and, consequently,

d1 = c(t1 − t0) =
1

1− γ
d(t0) ≈ (1 + γ)d(t0), (79)
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Figure 19. Stretching of the Duration of a PDU Due to Range Rate.

with γ = r
c . Similarly, the end of the slot starts being propagated at time t+ Ts.

Therefore, its arrival time to the spacecraft will be

t2 =
1

1− γ

(
d0
c

+ t0 + Ts

)
, (80)

at which point the distance between the ground station and the spacecraft will be

d2 =
1

1− γ
d(t0 + Ts) ≈ (1 + γ)d(t0 + Ts). (81)

Therefore, the duration of the slot onboard the spacecraft will be

T scs = t2 − t1 =
1

1− γ
Ts ≈ (1 + γ)Ts. (82)

Consider now the operation of a synchronous ranging system, i.e., the downlink signal

transmitted by the spacecraft is synchronous to the uplink system. Assume also that

the spacecraft introduces a delay τsc in the synchronicity process. Then the time of

departure of the downlink synchronous slot will be

t3 = t1 + τsc (83)

and

d3 = d1 + rτsc. (84)

Similarly, the end of the downlink slot will start departing at

t4 = t2 + τsc, (85)
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at which point

d4 = d2 + rτsc. (86)

To estimate the time of arrival of the signal, we need to find the trajectory of the RF

wavefront as a function of time over the downlink, which we denote pd(t). In

particular, we know that this trajectory will be linear and will satisfy the equation

d3 = −ct3 + b, (87)

where b is an unknown to be adjusted. Basic algebra yields

b =
1

1− γ
(2d0 + (c+ r)t) + (c+ r)τsc, (88)

and thus we can estimate the time of arrival of the downlink slot by solving pd(t) = 0.

This results in

t5 =
1

1− γ
2d0
c

+
1 + γ

1− γ
t+ (1 + γ) τsc. (89)

Repeating the same procedure for the end of the downlink slot yields

t6 =
1

1− γ
2d0
c

+
1 + γ

1− γ
(t+ Ts) + (1 + γ) τsc. (90)

Finally, we can now calculate different quantities of interest. For example, the

duration of a downlink slot as it reaches the ground is

T gss = t6 − t5 =
1 + γ

1− γ
Ts ≈ (1 + 2γ)Ts, (91)

where in the second equality we have used the fact that 1+x
1−x ≈ 1 + 2x for x small.

Similarly, the uplink OWLT propagation delay is

τu(t) = t1(t)− t =
1

1− γ
d(t)

c
≈ (1 + γ)

d(t)

c
, (92)

while the downlink OWLT delay is

τd(t) = t5(t)− t3(t) =
1

1− γ
d(t)

c
+ γτsc ≈ (1 + γ)

d(t)

c
+ γτsc (93)

and the RTLT delay is

τud = t5(t)− t =
1

1− γ
2d(t)

c
+ (1 + γ)τsc ≈ (1 + γ)

[
2d(t)

c
+ τsc

]
. (94)

III. Ranging Equation Under Linear Motion

This section derives general expressions for the forward and backward RTLT delay

under the assumption that the motion between a spacecraft and a ground station is

linear. To that end, this article considers the trajectories from Figure 20, in which
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Figure 20. Forward and Backward RTLT Delays.

notation has been kept consistent with the rest of this article. Index 1 denotes the

point in time in which the uplink slot starts arriving to the spacecraft. Similarly, index

2 denotes the point in time in which the synchronous downlink slot starts departing

from the spacecraft.

From the analysis in Appendix II, we know that

t1(tT ) =
1

1− γ

(
d0
c

+ tT

)
(95)

d1(tT ) =
1

1− γ
d(tT ) (96)

t2(tT ) =t1(tT ) + τsc (97)

d2(tT ) =d1(tT ) + rτsc (98)

tR(tT ) =
1

1− γ
2d0
c

+
1 + γ

1− γ
tT + (1 + γ)τsc (99)

τu(tT ) =
1

1− γ
d(tT )

c
(100)

τd(tT ) =τu(tT ) + γτsc (101)

τud(tT ) =
1

1− γ
2d(tT )

c
+ (1 + γ)τsc. (102)

Note that all these functions depend on the departure time of the signal tT . Therefore,

they can be used to evaluate the forward uplink and downlink OWLT delays, as well

as the forward RTLT delay.

To calculate the same functions in the backward direction, one must simply express tT

as a function of tR and then replace that result in the previous equations. After some
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simplification, this yields

tT (tR) =− 1

1 + γ

2d0
c

+
1− γ
1 + γ

tR − (1− γ)τsc (103)

τ̃u(tR) =
1

1 + γ

d(tR)

c
− γτsc (104)

τ̃d(tR) =
1

1 + γ

d(tR)

c
(105)

τ̃ud(tR) =
1

1 + γ

2d(tR)

c
+ (1− γ)τsc. (106)

These expressions can be further simplified using the following Taylor expansion:

1

1∓ x
≈1± x (107)

1± x
1∓ x

≈1± 2x, (108)

which results in

τud(tT ) ≈(1 + γ)

[
2d(tT )

c
+ τsc

]
(109)

τ̃ud(tR) ≈(1− γ)

[
2d(tR)

c
+ τsc

]
. (110)

Also, observe that the following relationships hold as expected:

τud(tT ) =τu(tT ) + τd(tT ) + τsc (111)

τ̃ud(tR) =τ̃u(tR) + τ̃d(tR) + τsc. (112)

IV. Range-Rate Post-Compensation

This appendix provides the necessary expressions to recover the PPM symbol timing

at the receiver when range-rate post-compensation is applied to the received signal.

This appendix also shows that post-compensation allows the receiver to increase the

integration time used for phase estimation, which in turn permits operation at worse

signal and noise conditions.

A. Symbol Timing with Range-Rate Post-Compensation

To start, consider an optical link between a transmitter and a receiver using PPM

modulation. Let t1 denote the departure time of an arbitrary signal photon from the

transmitter, and let t2 denote its reception time at the receiver. Then, in general, we

know that

t2 = t1 + τ(t1), (113)

where τ(t1) denotes the forward OWLT. Furthermore, if the distance between

transmitter and receiver is linear, then

τ(t) =
1

1− γ
d0 + rt

c
≈ (1 + γ)(τ0 + γt) ≈ τ0 + γt, (114)
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where τ0 = d0/c and we have used the fact that 1 + γ ≈ 1 and γ2 � γ.

Assume that the receiver is based on a photon-counting device as shown in Figure 13

so that discrete time tags of all detected photons are available for processing. Further,

assume that the receiver’s trajectory during the link operation can be predicted, and

thus an estimate of the range rate can be precomputed and provided to the receiver as

a priori information. Let γ̂ denote this estimate.16

To perform range-rate post-compensation, the receiver takes the incoming time tags

and applies the following transformation:

t′2 =
t2

1 + γ̂
≈ (1− γ̂)t2. (115)

Consequently,

t′2 ≈ (1− γ̂)(t1 + τ(t1)) = t1 + (1− γ̂)τ(t1)− γ̂t1︸ ︷︷ ︸
τ ′(t1)

, (116)

where τ ′(t1) denotes the apparent OWLT that the receiver signal-processing chain will

experience after range-rate post-compensation is applied. Moreover, assuming linear

relative motion between transmitter and receiver, we have that

τ ′(t1) =(1− γ̂)(τ0 + γt1)− γ̂t1
= [(1− γ̂)γ − γ̂] t1 + (1− γ̂)τ0

≈(γ − γ̂)t1 + τ0.

(117)

In the last step, we have used that 1− γ̂ ≈ 1 and γγ̂ � γ̂. In other words, we have

shown that by applying the transformation of Equation (115), the receiver operates

with observables that only contain the residual range rate εγ = γ − γ̂.

In general, once the slot synchronizer has locked, an estimate of the time of arrival of

the i -th PPM symbol can be recovered as follows:17

tPPMi
= ti + ϕ(ti), (118)

where ti = (M + P )Tsi denotes the time of departure of the i -th PPM symbol.

However, because of range-rate post-compensation, the slot synchronizer is tracking t′i
and ϕ′(t) instead of ti and ϕ(t). Consequently, to recover the actual symbol clock from

the PLL observables, we use

tPPMi = (1 + γ̂) [t′i + ϕ′(t′i)] . (119)

B. Integration Time with Range-Rate Post-Compensation

As noted in Section III.B, the bias of the one-shot phase estimator depends on

integration time used to calculate the phase estimate. This happens because the

16For consistency’s sake, γ̂ is an estimate of γ = r
c
.

17This expression assumes that the transmitter does not apply range-rate pre-compensation.
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one-shot estimator produces a single-phase estimate using samples captured over a

period of time during which the received phase was actually constantly changing.

Thus, if the integration period is set to a large enough value, the ML estimator will

fail to produce a phase estimate altogether.

Let t1 be the start of the integration period and t2 = t1 + Tint be its end. Then the

received phase at the start and end of the integration period will be

ϕ(t1) =
τ(t1)

T
≈ τ0 + γt1

T
(120)

ϕ(t2) =
τ(t2)

T
≈ τ0 + γ(t1 + Tint)

T
. (121)

Consequently, the phase difference between the start and end of the integration period

is

∆ϕ = |ϕ(t2)− ϕ(t1)| = |γ|Tint
T

= |γ|Nint (122)

with Nint equal to the number of PPM symbols used in the integration period.

Consider now the case where the received time tags are range-rate post-compensated.

Then, by virtue of the analysis in Section IV.A, the same reasoning is valid, except

that instead of the full range rate γ, the slot synchronizer will only experience the

residual range rate εγ . Therefore, with range-rate post-compensation, the phase

difference between the start and end of an integration period is

∆ϕ′ = |ϕ′(t2)− ϕ′(t1)| = |εγ |Tint
(M + P )Ts

= |εγ |Nint. (123)

To achieve the same performance with and without range-rate post-compensation, the

phase error introduced in any given integration period must be the same. Hence,

|γ|Nint = |εγ |N ′int, (124)

which yields

N ′int =

∣∣∣∣ γεγ
∣∣∣∣Nint =

1

1−
∣∣∣ γ̂γ ∣∣∣Nint. (125)

Note that |εγ/γ| is the relative error in the range-rate prediction provided to the

receiver. Therefore, as expected, if you had a perfect prediction γ̂ = γ and

|εγ/γ| → ∞, indicating that all the receiver dynamics have been post-compensated,

and thus the user is free to select an infinitely large integration period. From a

practical standpoint, this indicates that having good predicts of the spacecraft

dynamics not only facilitates the job of the receiver electronics, but it also allows the

system to operate at lower signal and/or higher noise conditions by allowing the user

to configure longer integration times for clock recovery.
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